Capital Flows to Russia, Ukraine, and Belarus:
Does “Hot” Money Respond Differently to Macroeconomic Shocks?

Scott W. Hegerty*

ABSTRACT

Capital flows into the former Soviet bloc have increased tremendously since the mid-1990s. Since the new members of the European Union have received most of the attention, few empirical studies have looked at Russia or the rest of the CIS. This study applies the structural VAR model of Ying and Kim (2001) to investigate the macroeconomic “push” and “pull” factors behind net flows of FDI, portfolio, and other investment into Russia, Ukraine and Belarus. Impulse-response and variance decomposition analysis shows that domestic income and monetary shocks, as well as foreign income and interest-rate shocks, have effects that vary by flow and by country. Russian FDI and portfolio investment show significant, but different, responses to income and foreign interest-rate shocks. In addition, Belarus responds positively to improved macroeconomic fundamentals.

I. Introduction

With the ongoing transition to a market economy, foreign capital has poured into the former Soviet sphere. Some countries, particularly those that reformed rapidly enough to join the European Union in 2004, have been particularly attractive destinations for this investment. Others (such as the Balkan countries and most former Soviet republics) have not received as much. In between these extremes lie Russia, Ukraine, and Belarus, which comprised the “core” states of the former Soviet Union. Russia attracted more than U.S. $16 billion in Foreign Direct Investment (FDI) and $8 billion in portfolio investment during the fourth quarter of 2007. Figure 1 shows the growth in FDI, portfolio, and other investment flows into these three countries since the mid-1990s. While FDI has been increasing, particularly in recent years, other investment (classified by the IMF to include loans and trade credits) has grown even faster.

While these flows can be beneficial—FDI can facilitate technology transfers and other positive spillover effects, and portfolio investment can help deepen a country’s capital markets—there are also risks. Capital can also be withdrawn, particularly “hot money” flows such as portfolio investment. These outflows can cause major problems—including, as Melecky (2005) noted, slower future growth. Russia, for example, experienced a capital outflow in late 2008 that could be simultaneously attributed to the world recession, domestic factors, or investor dissatisfaction after the Georgia invasion.

*Department of Economics and Finance, Wehle School of Business, Canisius College, Buffalo, NY 14208, 001-716-888-2604, hegertys@canisius.edu
Figure 1. Net Capital Inflows (Real, Billions of U.S. dollars)

Russia

Ukraine

Belarus

As a result, it is important to empirically model the macroeconomic determinants of capital flows, both for various countries as well as for different flows. This paper examines the effects of macroeconomic shocks for Russia, Ukraine, and Belarus in particular. These are chosen to add to the burgeoning literature on transition economies, which are belatedly following the path formed by other emerging markets in Latin America and Asia. In addition, these three countries occupy a specific position among other Soviet successor states. The top performers (particularly the Baltic nations) are now members of the European Union and either have adopted or plan to adopt the Euro, so they are included in numerous analyses of the EU and its periphery. The laggards (in the Caucasus and Central Asia), on the other hand, are institutionally weak and often lack reliable data for time-series analysis. As a result, Russia, Ukraine, and Belarus best represent the parts of this region that are still in transition.

As these specific cases are being analyzed, two sources of ambiguity in the literature—the effects of income shocks and the differences between the responses by different types of capital flow—are given considerable attention in this study. The application of a structural VAR using quarterly data provides some surprising and useful results.

1.2 Relationship to the Literature

The so-called “push-” and “pull factors” that drive capital flows can include income and monetary shocks. Economic theory, however, suggests that the effects of these shocks are ambiguous; they can decrease capital flows as well as increase them. Glick and Rogoff (1995) show that current accounts are driven by savings and investment decisions that differ depending on the persistence of income shocks. Since extra income can be saved or invested abroad in varying proportions, the current account (and thus capital flows) can be pro- or countercyclical and must be modeled empirically.

Likewise, this paper addresses another source of ambiguity: whether FDI and non-FDI flows really behave differently from one another. The literature is divided between two views. One, proposed by Claessens et al. (1995) suggests that these differences might be minimal. On the other hand, Chuhan et al. (1996) and Sarno and Taylor (1999) find that FDI and portfolio flows might indeed exhibit unique properties.

The three countries in question are also dissimilar, since each is in a different stage in the transition process. Belarus is the smallest and has the weakest market economy, which politically and economically is still Soviet in many ways. As a result, it has attracted the smallest net inflows. Ukraine has also undergone a series of currency devaluations, in addition to having a rocky relationship with Russia. Its political environment is unstable as well; following Viktor Yanukovych’s 2010 election, many investors fear a return to repression. Russia’s oil exports make that country more dependent on global factors, but its political situation might also make investors wary. In addition, Russia’s sheer size and regional diversity dwarf the others. As Broadman and Recanatini (2001) note, most of Russia’s
then meager FDI flows went to only four regions, centered around Moscow and St. Petersburg. It expected that this study will arrive at different results for each country.

This type of analysis has not been done for these countries. Previous research on capital flows to Central and Eastern Europe has neither focused on individual countries nor included foreign macroeconomic influences. Lipschitz et al. (2006) provide a theoretical framework behind the movement of capital (or lack thereof) to transition economies, emphasizing the importance of structural and institutional factors, without focusing on any specific economy. Working papers such as those by Ötker-Robe et al. (2007) and Von Hagen and Siedschlag (2008) describe recent developments regarding the growth of capital inflows, but omit Russia, Ukraine, and Belarus entirely. Other studies, such as Garibaldi et al. (2001), include these three countries, but focus on more microeconomic variables. Likewise, Lane and Milesi-Ferretti (2007) omit these three economies and the role of foreign shocks in their analysis. Hegerty (2009) investigates the role of foreign shocks using a VAR methodology, but looks only at the aggregate capital account for each of six recent EU entrants. These include the three Baltic countries, of which Estonia and Latvia were shown to be more vulnerable to domestic income shocks than to foreign shocks. No non-EU transition economies were included in that study.

As a result, there is ample room in the literature for a study that looks at the macroeconomic determinants of capital flows to Russia, Ukraine, and Belarus, while also focusing on the theoretical ambiguities regarding income shocks and “hot money.” Using a structural VAR method based on that of Ying and Kim (2001) to model the effects of macroeconomic variables for Russia, Ukraine and Belarus, this study finds that FDI, portfolio, and other flows do indeed respond differently from one another, and that the effects of income shocks vary from country to country as well.

This paper proceeds as follows. Section II describes the econometric methodology, particularly the structural VAR model used in this study. Section III provides the results, focusing on differences between countries and among flows. Section IV concludes.

II. Methodology

The effects of a set of domestic and foreign macroeconomic shocks on capital flows will be assessed with a Structural Vector Autoregressive (SVAR) model that will allow for impulse-response and variance decomposition analysis for Russia, Ukraine, and Belarus. Quarterly time series beginning in the mid-1990s are used to study the impacts of these macroeconomic shocks to net FDI, portfolio, and other investment for each country. Following Ying and Kim (2001) (or a later extension of the paper by De Vita and Kyaw, 2007), each flow is modeled as a function of a set of (unobservable) shocks, each defined as u. These shocks are to foreign income (u^{FY}), to the foreign interest rate (u^{FR}), to domestic productivity (u^{DS}), to domestic money (u^{DM}), and to each capital flow itself (u^{FLOW}). At each point in time, the flows can be modeled as:

$$flow_t = f \left(u^{FY}_t, u^{FR}_t, u^{DS}_t, u^{DM}_t, u^{FLOW}_t \right)$$

(1)
Because the shocks are unobservable, the model uncovers the underlying structural model through the following VAR model, which maps the shocks to a set of observable macroeconomic variables:

\[Y_t = \sum_{i=0}^{\infty} A_i U_{t-i} = A(L)U_t \quad (2). \]

These macroeconomic variables include (log) Domestic M2, divided by the country's GDP deflator, denoted \(M \); and (log) domestic real GDP, denoted \(Y \). Germany, as a major trade partner and source of foreign investment for these countries, serves as the "foreign" country. The remaining variables include the Euro Area Interbank Rate \((r^*) \) and (log) German real GDP \((Y^*) \). These four variables are included as first differences, and all original GDP series are seasonally adjusted using the Census X-12 procedure.

This extension of the model includes disaggregated capital flows in place of the capital account. These flows are net FDI (inward minus outward), portfolio investment, (liabilities minus assets), and other investment (liabilities minus assets). These are all measured in shares of GDP for each country and are labeled \(fdi, port, \) and \(other \), respectively. As a secondary measure, they are calculated in real terms (divided by the GDP deflator).

In Equation (2), \(A_i \) is a matrix of impulse responses to endogenous variables to exogenous shocks and

\[Y_t = (\Delta y_t^*, \Delta r_t^*, \Delta y_t, \Delta m_t, fdi_t, port_t, other_t)' \quad (3a); \]
\[U_t = (u_t^{FY}, u_t^{FR}, u_t^{DS}, u_t^{DM}, u_t^{fdi}, u_t^{port}, u_t^{other})' \quad (3b); \]
\[A(L) = \sum_{i=0}^{\infty} A_i L^i \quad (3c). \]

The structural model makes use of a set of long-run restrictions (following the Blanchard-Quah decomposition) that stipulates the following: foreign variables can only be affected by foreign shocks, and monetary shocks do not have any long-run impact on domestic output. In addition, capital-flow shocks do not affect any other variable. The three capital flows are ordered as in (3a) or (3b) because FDI is thought to be more stable than portfolio investment, and other investment is shown (using the sample standard deviations of the time series) to be more variable than portfolio investment. Thus, the \(A(L) \) or \(A(1) \) matrix is as follows:

\[
\begin{bmatrix}
\Delta y_t^*

\Delta r_t^*

\Delta y_t

\Delta m_t

fdi_t

port_t

other_t
\end{bmatrix} =
\begin{bmatrix}
* & 0 & 0 & 0 & 0 & 0 & 0
* & * & 0 & 0 & 0 & 0 & 0
* & * & * & 0 & 0 & 0 & 0
* & * & * & * & 0 & 0 & 0
* & * & * & * & * & 0 & 0
* & * & * & * & * & * & 0
* & * & * & * & * & * & *
\end{bmatrix}
\begin{bmatrix}
u_t^{FY}
u_t^{FR}
u_t^{DS}
u_t^{DM}
u_t^{fdi}
u_t^{port}
u_t^{other}
\end{bmatrix} \quad (4).
\]
Except for the flows, all variables are in logs, as well as first differences. The flow series are in levels, but deflated by each country's nominal GDP for the sake of stationarity (see below). Using the software JMulTi (see Lütkepohl and Krätzig, 2004), impulse-response functions and forecast error variance decompositions are obtained for capital flows for each country.

III. Results

Quarterly data from the International Financial Statistics of the IMF are used in this study. The time spans for the estimation are 1995q2-2008q4 for Russia, 1996q3-2008q4 for Ukraine, and 1997q1-2008q4 for Belarus. Difference terms are constructed using data beginning one quarter before the start of the estimation period.

The Phillips-Perron stationarity test is first performed on each variable; the results are provided in Table 1. Capital flows are tested using two deflators that are standard in the literature: each country’s GDP deflator (to capture real flows in domestic currency) or GDP itself. While the macroeconomic variables are first-difference stationary, or I(1), the test suggests that the flows as shares of GDP show more evidence of stationarity in levels. A SVAR(1) is then estimated for each country using flows deflated by GDP; it was also estimated using flows in terms of real national currency, but the results are very similar. While the capital flows themselves can influence each other, only the impulse response functions (IRFs) for shocks to the four main macroeconomic variables are presented. IRFs with 8-quarter horizons, as well as bands of ±1.96 standard errors (representing 95 percent confidence intervals), are given in Figure 2.

We first look at Russia. Our main finding is that non-FDI flows, particularly portfolio investment, react more strongly to macroeconomic shocks. Some of these effects are expected: a decrease in the European interest rate results in an increase in portfolio investment (and an increase in the rate would reduce it), implying that foreign capital might seek out Russia as a profitable place to invest. On the
Figure 2. Structural VAR Impulse-Response Functions
(With ± 1.96 Standard Error Bands)

Russia
FDI after shocks to M and Y

PORT after shocks to M and Y
OTHER after shocks to M Y
PORT after shocks to \(M \)
other hand, the effect on FDI is small, but becomes positive after about a year. This suggests that Russian FDI is more strongly determined by structural and institutional factors, rather than simply the interest rate.

The three types of flow clearly seem to behave differently with regard to monetary shocks. Portfolio investment sees a decrease a few months after an increase in the domestic money supply. Investors may be withdrawing these short-term investments as inflation or deterioration in the Russian economy becomes apparent. At the same time, FDI and other investment increase after a positive monetary shock, but to a lesser degree.

Income shocks appear to have an influence on all types of investment, but again, the effects on non-FDI are stronger. Foreign shocks reduce FDI, suggesting that people in other countries may be choosing to save the gains from increased productivity, or invest them at home, rather than make long-term investments in Russia. On the other hand, portfolio investment increases after such an income shock. This again highlights the differences between “hot” money and FDI, and the fact that foreigners might make more short-term investments after they experience growth in their own economies. Investors may be less willing to commit to long-term projects in Russia.

The differences among flow types hold for domestic income shocks as well. Growth in Russia reduces all three types of net capital flows in the short term. Portfolio investment experiences a
sustained and significant reduction, which could represent a capital outflow to havens abroad. FDI, however, registers a significantly positive effect after a year. This again suggests that investors are less willing to undertake FDI in Russia and that only sustained growth might encourage them to do so.

In Ukraine, however, the effects of these variables are weaker for all flow types. The foreign interest rate has little effect, except on FDI, which responds positively to an interest-rate increase. This finding is difficult to explain, but it is plausible that the “wealth effect” is responsible. The only other significant effect of note is that of domestic monetary shocks, which tend to reduce FDI. This is highly plausible, since Ukraine’s experience with inflation will make investors less confident in the country’s prospects for macroeconomic stability. Ukraine’s local macroeconomic environment plays more of a leading role in attracting foreign capital than was the case in Russia, and that the country’s relative financial isolation makes it less sensitive to global shocks in general.

Belarus shows a stronger response to these shocks. Two key results are noted: First, FDI increases after a decrease in the foreign interest rate, while other investment goes in the other direction, and portfolio investment is not affected. Belarus’ relatively closed economy means that “hot money” (other than lending) is not drawn in as with Russia. Second, FDI responds negatively to a domestic income increase, while portfolio investment registers a positive effect. The small size of these flows makes these results more difficult to interpret, but this hints at the role of domestic macroeconomic factors (including investor confidence) driving investment in Belarus. Improving economic fundamentals might be more influential in attracting capital into Belarus than are more traditional factors such as returns on investment.

To further assess the influence of each variable, we turn to the forecast error variance decompositions (FEVDs) for the flows in each SVAR. They are reported in Table 2 at one, four, eight, and 20 quarters. In general, they confirm many of the conclusions from our impulse-response analysis; they also show that the contributions of many of these variables are time-varying.

The foreign interest rate makes a large contribution to the forecast error of Russian portfolio investment—this value is as large as 18 percent after four quarters. Domestic income also makes a large contribution to Russian portfolio and other investment (about nine percent). These results further suggest that investment inflows are helped by relatively high interest rates, while income growth (a domestic factor) might prompt capital (out)flows. In Ukraine, most of the variance of the flows is from the flows themselves, with one main exception: that of \(r^* \) on FDI. This matches the key result from the IRFs. In Belarus, the foreign interest rate has a fairly large effect on other investment, as well as a lesser effect on FDI. In addition, domestic income is a contributing factor in net portfolio flows, corroborating the idea that economic growth in Belarus helps make the country a more attractive place to invest.

Overall, we find that the IRFs and FEVDs support the same conclusions. Each country—and each flow—responds to different macroeconomic “push” and “pull” factors. Russia, with the largest flows in
RFU

FALL 2011

dollar terms, sees outflows of all types of capital after a domestic income increase. Increases in the foreign interest rate, however, make Russia a more attractive destination for portfolio investment.

Table 2. Forecast Error Variance Decompositions.

<table>
<thead>
<tr>
<th>Russia</th>
<th>FDI</th>
<th>Portfolio</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>horizon</td>
<td>Other</td>
<td>Port</td>
<td>FDI</td>
</tr>
<tr>
<td>1</td>
<td>0.35</td>
<td>0.01</td>
<td>0.52</td>
</tr>
<tr>
<td>4</td>
<td>0.54</td>
<td>0.01</td>
<td>0.36</td>
</tr>
<tr>
<td>8</td>
<td>0.55</td>
<td>0.02</td>
<td>0.34</td>
</tr>
<tr>
<td>20</td>
<td>0.55</td>
<td>0.02</td>
<td>0.34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ukraine</th>
<th>FDI</th>
<th>Portfolio</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>horizon</td>
<td>Other</td>
<td>Port</td>
<td>FDI</td>
</tr>
<tr>
<td>1</td>
<td>0.18</td>
<td>0.00</td>
<td>0.62</td>
</tr>
<tr>
<td>4</td>
<td>0.29</td>
<td>0.01</td>
<td>0.50</td>
</tr>
<tr>
<td>8</td>
<td>0.30</td>
<td>0.01</td>
<td>0.49</td>
</tr>
<tr>
<td>20</td>
<td>0.30</td>
<td>0.01</td>
<td>0.49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Belarus</th>
<th>FDI</th>
<th>Portfolio</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>horizon</td>
<td>Other</td>
<td>Port</td>
<td>FDI</td>
</tr>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.05</td>
<td>0.83</td>
</tr>
<tr>
<td>4</td>
<td>0.12</td>
<td>0.04</td>
<td>0.74</td>
</tr>
<tr>
<td>8</td>
<td>0.13</td>
<td>0.04</td>
<td>0.74</td>
</tr>
<tr>
<td>20</td>
<td>0.13</td>
<td>0.04</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Russian income shocks also have an effect on its capital flows. In addition, while Ukraine shows comparatively little response to the main macroeconomic determinants, Belarus might see its relatively small capital inflows increase if its macroeconomic fundamentals—particularly economic growth—improve.

IV. Conclusion

While not as attractive as some other emerging markets in Latin America and Asia, the former Soviet republics of Russia, Ukraine, and Belarus have drawn in a growing amount of foreign capital in recent years. Since these flows can be highly destabilizing, it is important to study their macroeconomic determinants, and responses to foreign and domestic shocks. Since the underlying theory suggests that the effects of these shocks can be either positive or negative, they must be studied empirically.

This study examines quarterly time series of each country’s FDI, portfolio investment, and other investment from 1995 to 2008, and these flow series are placed in a Structural VAR model that was introduced by Ying and Kim (2001). Applying an appropriate set of long-run restrictions, the flows are modeled as functions of domestic monetary and income shocks, as well as foreign interest-rate and income shocks.
Impulse responses and variance decompositions uncover certain key results. First, a distinction must be made between portfolio investment and FDI flows. Second, the impact of macroeconomic shocks can vary over time. Finally, each country shows a unique response for each type of flow. Many of these effects are surprising, but can explain specific issues within each country.

In Russia, for example, certain flows follow what might be expected intuitively. Portfolio investment responds positively to a decrease in European interest rates, suggesting that investors are attracted to a higher rate of return. At the same time, they also increase along with increased foreign income, suggesting that foreigners are choosing to invest this income abroad. On the other hand, these flows decrease after a positive shock to home income. This implies that capital flight is indeed an issue, particularly if Russia continues its recent growth. The differences between the flow types support the “hot money” hypothesis: FDI responds only to income shocks—but only weakly, and temporarily after about two quarters.

The other two countries show unique responses as well, both with regard to the other countries’ results and across each type of flow. Ukraine registers very little response for any flow, perhaps due to the fact that it is not yet very well integrated with Western Europe. Belarus might see portfolio inflows increase as a result of economic growth, but this effect does not hold for FDI. As a result, further studies of these countries’ capital accounts, now that sufficient time series are available, should take care to pay attention to the country-specific differences between “hot” portfolio flows and FDI.

These results differ from previous research on emerging markets in other parts of the world. Ying and Kim (2001), for example, note that foreign shocks showed a dominant—and growing—influence on capital flows to Mexico and Korea over their period of study. De Vita and Kyaw (2008) examine a broader set of countries and find that income shocks play more of a role than do monetary shocks. Our results differ from these for all three countries.

These results have important policy conclusions. First of all, the region should be aware of the fragility of capital inflows and the possibility of a damaging outflow—but this potential is greater for Russia, and for non-FDI investment. Secondly, this study underscores the fact that these countries cannot be considered a homogenous unit. While Russian investment most closely resembles the “typical” pattern by which foreign capital seeks the highest rate of return, Belarus’ closed economy and Ukraine’s experiences with partial reform and hyperinflation mean that their capital inflows are driven more by local determinants rather than global ones.

ENDNOTES

1. Source: International Financial Statistics of the IMF.
2. Not only does a length of one lag preserve as many observations as possible, it also minimizes the log likelihood (out of four possible lags) for these specifications. The results of this test, as well as a SVAR(1) using real flows, are available upon request.
REFERENCES

